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LARGE-EDDY SIMULATION METHOD FOR FLOWS IN RIVERS AND
COASTS CONSTRUCTED ON A CARTESIAN GRID SYSTEM

Akihiko Nakayama

ABSTRACT

A Large Eddy Simulation (LES) method that is applicable to calculation of various flows with a free
surface as the upper boundary and solid surface on the bottom is described. The grid system used is a
fixed rectangular mesh but the boundary geometry can be of general shape and the boundary surfaces may
be hydro-dynamically smooth or rough or with obstacles of various shapes and complexity like those that
are seen in natural rivers and in coastal regions, but not with movement of loose bed materials. It is a
culmination of model development, trial testing, basic validation and applications to several specific
applications made by the faculty and students of Civil Engineering Department of Kobe University over
several years and the developed software code is dubbed KULES — river and KULES — coast. This report
summarizes the basic equations for the motion and necessary models together with an account of numerical
methods used. It also shows some basic validation results and sample application results.

1. INTRODUCTION

Numerical simulation methods of real-life turbulent flows are said to have reached to a stage where many practical
flows of engineering and environmental applications can be calculated by readily accessible computers with
satisfactory results for many purposes. And as the computer power, the cost and the accessibility improve at the
present fast rate, many methods are being applied to variety of flows by many groups of research engineers and
scientists accumulating a large amount of experiences and learned lessons. They indicate (for example Leschziner"
and Launder and Sandham®), that methods that simulate the turbulent motion that gives rise to effective stresses and
diffusivities in averaged flows, or at least part of it, rather than modeling statistical quantities or integrated quantities,
produce more accurate, more detailed and reliable results. As to its costs, which have been blamed as the main
reason for opting for other methods, they continue to drop at a fast rate, often faster than the rate of development of
alternative theory or improvement of methods. Among various methods of simulation, those that simulate the most
important part of the turbulent motion, the large scale motion, and by modeling small scale effects, requires minimal
physical and mathematical modeling (e.g. Sagaut *). Those that depend on models on quantities that change from
one situation to other will continue to suffer from shortcoming that there are no universal laws that apply to all large-
scale turbulent motions. Therefore, a natural trend of turbulent flow calculation is to apply the concept of Large
Eddy Simulation (LES) of one kind or other (e.g. Grinstein et al.?).

Recently, commercial or free open source CFD software packages are becoming popular even in academic
communities. Those well-managed or well-exercised packages are not yet customized to be exploited as a LES
simulator. Methods suitable for LES are not always the same as more traditional ones. The results are in general
grid-dependent and numerical methods and interpretation of results are different as well. ~ Yet theoretically, they give
better results as the grid resolution is increased. The limitation will be when there are large differences between the
scales of turbulence and the scales imposed by external conditions. We have tried to construct a LES simulation
methodology that applies to a group of flows encountered by civil engineers working on problems in natural streams
or constructed channels and those in coastal regions, which are characterized by the existence of free surface. We
have examined several different approaches, tested them and examined the appropriateness of the results mainly for
engineering purposes, and have reached to some standard that can be an alternative to widely circulated packages.

The development of turbulent-flow simulation methods requires a sound basic methodology, unified technique of
implementation, and painstaking efforts of removing any small bugs. It requires a consistency of a single developer
but needs checking by multiple users. What is described here is one of several LES methods developed and
implemented by a group and tested by its members in the civil engineering department of Kobe University over
several years and is the one approaching a mature state. It is the one constructed on rectangular mesh in Cartesian
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coordinates but made to adapt to various flow situations in river and coastal engineering applications.

While there are many disadvantages known to using fixed rectangular grids to represent flows in natural and
complex domains compared with unstructured grid or boundary following mesh systems or even mesh-free methods,
many advantages in the formulation and interpretation of the simulated results offered by the fixed grid on Cartesian
coordinates are hard to dispose of. The river floods breeching levies and waves running up coasts, for example, are
far easier to be represented on fixed grids than on boundary-fitted grids which need redefinition as the water front
advances or retreats. Furthermore, efficient methods of formulating boundary conditions on complicated connected
and unconnected flow regions that may be moving, are being proposed (e.g. Mittal & laccarrino”).  One inefficiency
of using fixed rectangular grid is when the flow domain occupies very small portion of enclosing rectangular region
like a narrow and long meandering river reach. This inefficiency which was quite severe when the limitation on the
memory space was small, is now not so serious with abundant memory space available on even many small computer
systems.

By discretizing on a rectangular mesh, some of the development may be done directly in the finite difference sense
without worrying much about the partial differential equations and can be presented clearer in a simpler framework.
The formulation of the boundary conditions, for example, is far easier if we restrict to rectangular mesh. The
purpose of the present write-up is partially to summarize the methods and document the loosely assembled software
dubbed KULES-river and KULES-coast that specialize in simulating free-surface flow on a fixed rectangular mesh
basis.

2. LES METHOD IMPLEMENTED IN CATESIAN COODINATES

2.1 Basic governing equations

In an application to flows in natural streams and those in coastal areas, we observe following points. First, the flow
regions are very irregular in shape and change in time. Second, the scales of the flow, both spatial and timewise are
very large and the spacings of grid points and the time step that can be accommodated by a readily available computer
system are nowhere enough to resolve dissipation scales. Yet with a reasonable number of grid points like a few
million points, which roughly divide the total flow region into cubes of orders-of-magnitude smaller in length, most
of the large-scale flow and a good fraction of the turbulent fluctuations can be resolved from which not only the mean
flow but turbulent stresses can be evaluated. That means that the filtered flow with this scale does represent the
overall characteristics of the flow being simulated very well.

The filtered equations of motion and the continuity equation for the spatially-filtered velocity components (u,v,w)
and the filtered pressure p in rectangular coordinates (x,),z) with z taken positive vertically upward are
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where 7 is time, p and v are the density and the kinematic viscosity of water, g is the gravitational acceleration, and 7,
etc. are the effective stress components representing the effects of the unresolved scales of motion.

Since the movement of the water surface is an important part of the flow feature, we solve the spatially-averaged
kinematic equation for the elevation # of the filtered water surface along with the velocity field. If we limit to cases
where £ is a single-valued function of the horizontal position (x,y), it is
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where u, ,v,, w; are the (filtered) velocity components at the water surface, and 7, and 7, are the sub-grid scale free
surface fluctuation terms that may not be known well but are discussed for example by Shen & Yue®.

For the cases with appreciable, but not too large, density variations, we use the Boussinesq approximation and
replace the gravity term in the right hand side of equations (1) by
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where p, is the reference density which also replaces p in the rest of the equations and Ap is the deviation from it.

Depending on how the density changes, additional equations for the parameters that determine the density changes
are introduced. In the case where the water density is determined by the (small) concentration of mixed fluid with
different density, we solve the diffusion equations for the concentration ¢ of the mixed fluid
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where D is the coefficient of molecular diffusion and p, %, 7 are the sub-grid transports in x, y and :z
directions.

2.2 Subgrid model

While a wide range of models for the sub-grid effects have been proposed in the last decade or so (e.g. Sagaut™), but
after trying a few different variations, we feel a model that is mathematically simple, numerically efficient and less
complex in implementation is best for simulating large-scale flows in complex domains than those elaborate ones
with extra computational loads. We use the eddy viscosity model with the effective kinematic viscosity Ve
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where A is the geometric average of the grid spacings and C; is the Smagorinsky constant for which we typically take
a value of 0.13. The numerical grid we will use is not assumed to resolve the flow near solid surfaces accurately.
It is the main feature of flows of civil engineering applications that so-called near-wall flow cannot and will not be
able to be resolved by any realistic computer systems that may become available in near future. How the flow in
this wall region is treated is as important as how the main equations of motion (1) are solved and how the sub-grid
scale effects are modeled. So we describe how the near-wall flow is treated here together with the sub-grid model.

The role of the near-wall flow is how it generates the turbulence that gives rise to resistances. It is known for
sometime (e.g. Robinson®) that the bursting eddies in this region are responsible for large resistance compared with,
say non-turbulent laminar flows. So we use a model that relates the near-wall flow velocity to the wall shear stress
on the local and instantaneous basis. Instead of using classical ones proposed by Schumann® and improved by few
others, which we found, do not fit the instantaneous flow data well (Nakayama et al.'”’) we use the following
empirical relation. We found it works well'”, at least as well as other near-wall treatment (Piomelli and Balaras'”
and Leveque et al.") and such as reducing the sub-grid eddy viscosity or using dynamically determined values of
eddy viscosity coefficient.

If (u;,v,w;) are the velocity components calculated at points closest to a solid wall, the Cartesian shear stress
components on the wall are written in terms of the velocity as
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where ¥ = \lu% + v12 +wi ,and C,is a model coefficient and is evaluated by a friction law for instantaneous flow.

It is noted that the above form for the stress does not satisfy the symmetry condition or the Gallilian invariance that
are usually required for stresses within flow. It is very specific to be applied to flow close to a solid wall. For now,
since we do not know the friction law for fluctuating flow, we use the equations that have been used to relate the
mean velocity and the mean wall stress.
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where A(=2.5), B(=5.2) ,C(=8.5) are constant. u, is the friction velocity defined by the total wall stress z, of which
components are given by Eq.(8), & is the roughness height and z; is the distance to the solid surface. It is noted that
Eq.(8) and Egs.(9)-(11) have to be solved iteratively like ‘wall function” method used in two-equation turbulence
models ( Launder & Sandham®).

When the roughness height & is larger than the grid height, and the roughness elements can be resolved by the grid,
the effects can be more directly reflected in the boundary geometry. When the exact shape is very complex but the
envelope of the distribution may be simple enough to be resolved like trees and vegetation, the effects are modeled by
introducing in-flow drag. In such a case we add to the right hand side of Eqs.(1) the body force of the following
form

f,=—C,AVu, g,=—C,AVv, h,=—C,AVw (12)
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where C, is the average drag coefficient, A is the average density of surface area that receive the drag force and V is

the magnitude of the velocity at a point in the roughness influence area.
As to the sub-grid scale terms 7, and 7, in the equation for the free-surface elevation, we use a gradient model'?

Oh oh
2-hx = _}/sgs —é; s Thy = _7sgs —é;7 7sgs T 7/ng5 (13)

where ,, is a model coefficient which is taken to be proportional to v (e.g. Hodges and Street').

2.3 Boundary conditions

Since how the flow near solid boundary is treated has been explained as part of the sub-grid model of unresolved
motion, here we describe how the other boundaries are treated.

The free surface is treated as the freely moving boundary and the motion of air above it is ignored. This means
that the pressure and the normal viscous stress on the free surface are constant and the shear stress components on the
free surface vanish. Since we use the eddy-viscosity model for the sub-grid stresses, zero shear deformation
condition assures that both the viscous and the sub-grid shear stresses vanish. The exact application of these
conditions is a little more complicated. When such an air-water interaction like wind waves is important we set the
shear stress boundary condition. It will be explained in the next section on the numerical method how these
conditions are implemented in terms of the Cartesian components on a rectangular mesh.



The surface tension effects and/or the effects of the sub-grid fluctuation of the free surface as indicated in Eq.(3) is
important, we apply the condition

p+oK =0 (14)

where o is the coefficient of surface tension and K is the radius of curvature of the free surface positive for convex
fluid surface.

For boundaries with clear inflow and outflow sections like that in of river reach, it is assumed that the flow is sub-
critical at the upstream inflow and at the downstream outflow sections or take the calculation region to meet this
criterion. In the inflow section, the mean-flow velocity component perpendicular to the section is prescribed. If a
detailed distribution is not known as the case of river flows, and only the total flow discharge is known, the standard
logarithmic profile for fully-developed two-dimensional open-channel flow is assumed at each vertical section across
the width of the flow with constant friction velocity. This implies that the velocity takes the maximum value at the
free surface and these maximum values are larger at deeper sections.

For reproduction of turbulent fluctuations in the simulated flow, we need to include fluctuating velocity
components in the boundary conditions. Turbulent fluctuations appear only after long time and long distances of
travel compared with the smallest resolved scales. Therefore we take the fluctuating component some distance
downstream of the inflow section and superimpose on the prescribed mean-velocity at the corresponding position in
terms of the distance from the bed and from the center of the outflow section. The velocity components parallel to
the inflow section cannot be imposed on the staggered-variable scheme but add all fluctuation components on the first
calculation points from the inflow section. The latter assumption on the fluctuating component is somewhat rough
but is better than imposing purely random fluctuation or even no fluctuation.

For fully-developed flows that are often considered as idealized benchmark validation cases, the periodic boundary
condition where the quantities at the inflow and outflow sections are set exactly equal. For the free surface elevation,
either the same periodic condition is applied when the coordinates are inclined from the direction of the gravitational
acceleration by specifying the ‘bed slope’, or constant difference is set between the corresponding upstream and
downstream sections when there is no gravitational acceleration in the streamwise direction.

For flood flow calculation in which the inflow flow rate takes a prescribed discharge hydrograph, say O(#) we
modify the velocity so that the discharge approaches to the desired value with a relaxation time 7; by solving the
equation
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where Q((t) is the given discharge at time ¢, S; is the area of the inflow section and 7; is the time constant, which we
typically set to 50 times computational time step. It is noted that when the time constant T; is zero

[u,ds =0, (16)
Si

at all times. Since the velocity at the plane next to the inflow section is computed by the equations of motion that
specifies the time change, condition (16) is known to be too stiff'>.

The free-surface elevation at the inflow section is not prescribed but is computed in the solution process. At the
outflow section, a few different forms of the outflow condition have been considered. The first one is the usual free-
outflow condition, in which the streamwise gradient of the velocity components are set to zero. In the second
method, the water level is set to the given value and the pressure distribution is assumed to be hydrostatic. In the
third method, we follow the open-boundary condition often used in calculation of coastal flows with open sea
boundary (Blumberg & Kantha'”). In this method, velocity and the water surface follow the partially-clamped
radiation outflow condition. We also use a three-dimensional extension of the more traditional conditions used in one-
dimensional flood-flow calculation, in which the water surface is determined from the uniform-flow condition. This
is equivalent to the free-outflow condition but is evaluated based on the cross-sectional average velocity. Finally, a
condition that is close to the known observed relation between the outflow water depth and the discharge O,. For
the depth-discharge relation, we typically use the power relation

H=Cp0, +H, (17)

where H is the mean water surface elevation at the deepest point in the outflow section and is assumed constant across
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the section, O, is the total flow rate through the outflow section, Cy, » and H, are constants taken to fit the existing
data. After trying these conditions, the results reported in the next sections are obtained by the power law H-Q
relation fitting the observed data.

We allow that the wetting edge either advances or retreats as the flow goes over dry land. No specific condition
is needed here but the calculation of the free surface position should consider the possibility that the zero flow depth
next to region of nonzero depth can have finite depth and vice versa. How it is done is explained in the numerical
method section below.

3. NUMERICAL METHOD

3.1 Difference scheme on rectangular mesh

For various reasons explained above and described below, we formulate our numerical method based on the finite
difference method for the Cartesian components of the velocity vector at staggered variable definition positions on a
rectangular mesh. In this scheme, the pressure is defined and calculated at the center of a cell while velocity
components are computed at the centers of cell surfaces normal to the direction of the velocity components. The
conservation of mass is formulated with respect to this cell but the conservation of momentum is formulated with
respect to different cubes centered around the point of definition of respective velocity components. Figure 1 shows
how the positions where variables are defined on the rectangular grid system. Here 4(x,y) is the height of the free
surface and z, (x,y) is the elevation of the bottom solid surface, and the flow is in the region bounded by these two
surfaces. A(x,y) and z,(x,y) are defined, similar to the variables defined at the staggered positions, at the center of
cells projected in the vertical direction. So there is no information as to the inclination within a cell, as might be
implied in Figure 1.

The basic scheme we use is a fractional step method in which the momentum equations are advanced in an explicit
way and the pressure is determined and the velocity is corrected so as to satisfy the continuity equation at the
advanced time. If u* is the time-advanced velocity component in the x-direction from time # = ¢ by A¢, it is obtained
by the Adams-Bashforth scheme as
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the cell containing the point where p” is defined, becomes sufficiently small. Here Ax;, etc. are the distances from the
center of the cell to the center of the neighboring cell. These procedures are applied to the pressure and velocity
associated with the fluid cells designated by circles in Figure 1. For cells containing the free surface designated by

triangles, the pressure and the velocity components on the surrounding surfaces are not corrected by Egs.(19) and (20).

The pressure, instead, is prescribed by the free surface pressure condition. The divergence associated with this cell
D* is used to move the position of the free surface by

h" =h"" — D* AzAt @21

where Az is the height of the cell containing the free surface.
This equation amounts to a finite difference form of the equation for /# without the sub-grid terms. If the sub-grid
terms are added

B =k —|D* Az =y, (52h+ 52 ) At (22)

where 6, and &’ are the difference forms of the second derivatives in x and y directions.

The actual algorithm turns out very close to the VOF method (Hirt & Nichol'”) when liquid is assumed to occupy
the bottom part of a cell. One difference is that in the present method the free surface position is calculated
simultaneously with the pressure and there is no lag in the calculation steps as in most other methods including a
level-set method'®. This way the total volume of fluid can be made to conserve accurately and a stability problem
associated with the lag between the steps of velocity calculation and the free surface calculation can be avoided.
The validation as to the mass conservation is given in Ref 19).

In the time advancing step, either second-order conservative difference or the third-order upwind difference can be
used for differencing the convective terms. The former is preferred but when a variable-spacing grid or coarse grid
is used, the latter scheme works better.

With regard to the cells neighboring solid surfaces as indicated by squares in Figure 1, the velocity components
normal to the solid surface are set to zero. In the rectangular-mesh formulation, # component, for example, is set to
zero on the surface neighboring a solid cell on the right or on the left in the configuration of Figure 1. The tangential
velocity components are not specified. The tangential velocity components at their definition points closest to solid
surfaces are used to obtain the wall shear stress on the neighboring cell surface that is needed in evaluating terms in f,,
g, and A, of the differenced momentum equation for this velocity component.

The cells that contain the wetting front will need a separate treatment. An example of variable arrangement in this
case is shown in Figure 1(b). In order to correctly calculate the movement of the wetting front, the horizontal
velocity component at the vertical surface (the surface bordering cell indicated by a square and that indicated by a
triangle in Figure 1(b)) of the cell containing the wetting front must be computed according to the equation of motion.
This means that the pressure next to the front-containing cell must be set so that the horizontal pressure gradient is
evaluated. In order to do this, the pressure at the center of the cell outside of the front-containing cell is set by using
the boundary condition that the pressure at the front is atmospheric or zero. This amounts to the same treatment as
other cells designated as the fluid cell containing free surface.

There is one other complication. If the surface tension and wetting effects of liquid are not considered, the
wetting front should move instantly along a smooth horizontal or down slope surfaces. The present scheme allows
one cell at one time step. Since the time step is usually taken to satisfy the Courant number requirement and the
speed of propagation of surface wave, the speed of propagation is faster than the fluid velocity itself. In most
applications, however, the surfaces are geometrically rough. Small roughness elements will retard the movement of
the front not by the shear stress but by pressure force on the vertical sides of the roughness elements. In the present
method, it is assumed that there are small protrusions of height some fraction of the roughness height which in turn is
a fraction of the thickness of the numerical grid. With this assumption, the rate of flooding can be reproduced very
well but on a smooth surface it propagates one cell per one time step.

The variable arrangement and the calculation procedure near the other boundaries such as upstream and
downstream and open boundaries are done as follows. The boundaries are classified as either those where the
velocity or the total discharge or those where the elevation of the free surface is specified. The velocity components
normal to the boundary is specified directly at the definition position. Tangential velocity components are not
defined on the bounding surfaces, they do not have to be defined or should not be. However pressure and the free
surface elevation gradients may be specified at the boundary. This is done by extending cells just outside the

boundary and set the values at the center of these extended cells so that the normal gradient becomes the desired value.

It is done to specify tidal elevation. Also for uniform flows in a long channel, the surface gradient is set equal to the
bed shear. In case of setting the downstream elevation directly or by a stage-discharge relation as described in the
previous section, the values at the center of extended cell is set so that the value on the boundary becomes the desired
value.
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As to the fluctuation components of velocity and pressure, those at the inflow boundaries are either fed back from
some distance downstream or by setting an approach section where turbulence is made to develop by applying
periodic boundary condition at the inflow and outflow boundaries of the approach section. Those at the outflow
section are allowed to translate by using the radiation condition.

4. VALIDATION CALCULATION OF BENCHMARK FLOWS

The present method has been tested in several basic flow configurations. Like validations of most new sub-grid
models and numerical methods, we first show the results of calculation of a fully-developed open-channel flow. In
the present case we use a case laboratory experiment at large enough Froude number so there is a free surface
fluctuation. The fully developed turbulent flow in a flat open channel measured by Nakayama®” is chosen. Two
different grid spacings are used. The first one is a coarse grid of 50x40x30 in the streamwise, lateral and vertical
directions, respectively. The near-wall grid spacing is as large as 35 wall units. The second grid is a finer
66x64x112 grid and the near wall is resolved to 3.0 wall units. Calculations are started with a velocity distribution
with random fluctuations and in a constant depth channel. The periodic boundary conditions are applied in both
streamwise and the lateral directions. The Reynolds and Froude numbers based on the mean depth and the average
velocity are 20,000 and 1.20, respectively, which correspond to a case of experiments done by Nakayama *”. The
channel bed slope is adjusted to obtain the required flow rate.

The calculated mean streamwise velocity U is plotted in the wall coordinates in Figure 3(a) and in linear scale in
terms of the average cross-sectional velocity U, in Figure 3(b) together with the experimental results. The friction
velocity u* used in these plots (different from »* in Eq.(18)) are calculated from the channel bed slope. The velocity
in the logarithmic layer is seen to lie above the standard log-law or the experimental data. ~ The fine-grid result is

(a) mean velocity distribution in wall coordinates (b) mean velocity distribution in linear scale
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Figure 2. Mean velocity and turbulence intensity distributions in a fully developed open-
channel flow for Re=20,000, Fr=1.2.



closer to the experiment and the standard log-law but not by a large margin. The linear plots of the mean velocity of
the two runs, however, are not much different. It means that although the wall shear stress is under-predicted by the
present method with a grid not sufficiently resolving the near wall region, the overall velocity profile is calculated
fairly well.

The calculated turbulent intensities normalized by the friction velocity are shown in Figure 3(c), again compared
with the same experiment. The streamwise intensity is seen to be over-predicted with the peak positions farther
away from the wall, and the transverse and the spanwise intensities are under-predicted. The results with the finer
grid are closer to the experiment. These trends are consistent with the previous calculations of closed-channel flow
with Smagorinsky models (e.g. Froehlich & Rodi included in Ref.2)). Near the free surface, there are some
differences between the calculation and the experiment.

In the present calculation we have ignored the sub-grid surface fluctuation terms in (6) and the effects of free-
surface on the eddy viscosity are not taken into account and these may be the reason for the differences. However,
the known characteristics of the non-zero vertical fluctuation and the increased lateral fluctuation near the free surface
are reproduced correctly.

As the second validation case, we compute the flow in a straight rectangular channel with side walls. This case
will validate the implementation of the side boundaries. Direct Numerical Simulation (DNS) results of a flow in a
square channel with vertical side walls and the rigid free-slip surface as the upper boundary have been conducted by
Joung & Choi’" and the results may be compared. By computing this flow we can examine how well secondary
flows may be computed that are influenced by the boundary condition on the side walls. We compute the same flow
with the present LES method but allowing fluctuation of the free surface. So we set the channel slope instead of
imposing the pressure difference between the upstream and downstream sections normally done when the free surface
approximated by a rigid lid.

The computational region is similar to Joung & Choi calculation and periodic conditions for all velocity
components, the pressure and the depth are applied. The number of grid points is 120 x 100 x 88 and the distance
from the wall to the closest calculation point is about 30 wall units. The channel bed slope is set to 1/1000 with
periodic conditions between the upstream and downstream ends, which results in the flow such that the Froude
number Fr based on the mean velocity is 0.28 and the Reynolds number Re of 110000 about ten times the DNS. The
initial velocity distribution and the free surface shape are taken from the results of the first validation case without
side walls with the width of the flow same as the average depth. The average depth H obtained after computation is
slightly smaller than the width but less than 0.1% and the difference is considered negligible.

Figure 3 shows a sample of instantaneous velocity distributions together with the variation of the free surface
elevation. Figure 3(a) is the velocity distribution close to the free surface. Relatively constant velocity and
boundary-layer-like disturbances near the walls are seen. The free surface fluctuation is seen smoother than those of
the streamwise velocity but more small-scale variations are seen near the side walls. The instantaneous profiles near
the bottom (Figure 3(b) show fast and slow flow streaks, typical of wall-shear flows, four or five of them across the
width of the flow. These are related to the secondary flow pattern in the time-averaged flow.

(a) velocity vectors near free surface and free surface elevation variation
y

intervals between contours is 0.001H

scale of vector length is only relative but same as in (a)

Figure 3. Sample of simulated instantaneous flow.
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(a) DNS by Joung & Choi®", (b) present LES (c) present LES
Re=1.0x10*, Fr=0 Re=1.1x10°, Fr=0.30 Re=1.1x10°%, Fr=0.39
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Figure 4. Mean primary and secondary flows, contour values are mean streamwise velocity
normalized by the bulk average velocity.

(a) DNS by Joung & Choi®”, (b) present LES (c) present LES
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We have conducted an additional calculation with identical conditions except the Reynolds number is ten times this
calculation and one hundred times Joung and Choi DNS. The results of the time averaged flow field in terms of the
primary and the secondary flow velocity distributions are shown in Figure 4 along with the DNS results. The lack in
smoothness of the distribution in the presently calculated results compared with the DNS may be due either or both
due to the difference in the Reynolds number or insufficient averaging time but the present results appear reasonable
expectation of the flow at higher Reynolds numbers with progressively thinner layers of the high velocity gradient
near the walls. The present results are the average over about ten flow-through times. The secondary circulation
directed towards the bottom corners is reproduced and the surface inner and outer circulations are also reproduced
correctly with smaller horizontal extent which is due to the higher Reynolds number.

In order to examine how well the Reynolds stresses are calculated, the Reynolds shear stress component 'y'
which is related to the velocity gradient in the horizontal direction y are shown in Figure 5 together with the DNS
results. This quantity is a characteristic of channel flow with side walls. In the horizontal plane near the channel
half depth the distribution resembles that of flow between two parallel plates but bear the bottom and near the free
surface the distribution is influenced by the secondary flows. The present results are consistent with the DNS results
of the lower Reynolds number with the position of the peak closer to the walls.

The present LES calculates the fluctuations of the free surface elevation. In the present sub-critical Froude
number cases, the RMS fluctuation levels are 0.00040H and 0.00056H at the channel center and near the side walls
for the first case of Fr=0.30 and 0.00034H and 0.00069H for the case of F7=0.39, respectively. They are
consistent with the experiment of Nakayama done in a 2 dimensional channel without side walls.

Next, in order to examine if the movement of the wetting front and larger free surface motion are calculated
correctly, the motion of solitary wave running up a slope is then calculated. Comparison is made with an inviscid-
flow calculation by Nishimura & Takewaka™. Present calculation is done with a prescribed time progress of the
flow rate at the section of incident wave starting at the initial water at rest. The viscosity is set so that the Reynolds
number based on the initial depth and the maximum flow speed of approximately 10000. No turbulent fluctuations



(a) calculation by Nishimura & Takewaka **, at t=1.74s (upper) and 2.19s.

(b) present calculation at 7=1.7s and 2.2s
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Figure 6 Solitary wave running up a slope, comparison with Lagrangian method.

are introduced either in the initial flow or inflow section and the simulated flow is non-turbulent. The main purpose
in this calculation is to examine if the free surface movement is reproduced well and not meant to reproduce
fluctuations.

Figure 6(a) shows the results obtained by Nishimura & Takewaka® using a Lagrangian coordinate method
assuming inviscid flow on perfectly smooth surface. Figure 6(b) shows the results of the present calculation which
includes the region where the bed is dry to show the wetting front. In the present calculation, the bed is assumed
smooth so that the position of the wetting front is where the pressure gradient balances the gravity. The two
calculation results agree very well at /=1.74s when the wave is mild but at /=2.19s when the wave front becomes
peaky the free surface of present results is smoothed a little. This is considered to be the difference between the
ideal friction-free calculation and with a finite Reynolds number.

One concern that is often raised when a rectangular mesh is used to represent curved boundaries is how sensitive
the near wall as well as the overall flow results are to the boundary conditions set at staggered positions not perfectly
coinciding with the real boundary. In the present method, the near wall flow is modelled and the zero flux and shear
stress condition is used instead of the no-slip condition as explained in the previous section. In order to demonstrate
the degree of accuracy of this type of boundary condition used in rectangular grid, we calculated a flow around a
channel bend with curved walls. The cross section is a 1.3m wide rectangle and the average depth of flow is 0.15m.
The flow in 193 degree circular bend with the radius of the curve of 1.7m of this channel has been investigated by
Blanckaert” and Zeng et al. ** and Inokuma et al. » both computed the flow using boundary-fitted curved
coordinates. Since it involves some modification in the present calculation code to calculate the case of more than
180 degree bend, we modified it to 135 degree bend keeping all other parameters same as the experiment of
Blanckaert™ so comparisons can be made, though not precise, with the experiment and the corresponding
calculations using curved coordinates (Figure 7). The grid size is 222x192x70 with equally-spaced mesh in the
horizontal directions with the spacing of 0.03m and variable grid spacing in the vertical direction with the minimum
grid size of 0.5mm near the bottom. Two channel-width long section downstream of the inflow entrance is used to
develop turbulence with the periodic boundary condition as explained in the previous section. In this configuration
less than 20 percent of the entire grid points fall within the flow and the rest are not used.

Figure 7 shows the results of the present method in terms of the distributions of the velocity vectors on the free
surface and the depth-averaged velocity U normalized by the bulk average velocity U,,. The surface velocity is an
instantaneous snapshot which appears reasonable without noticeable disturbances. The depth-averaged velocity
distribution is qualitatively in agreement with the experiment and the LES using boundary fitting coordinates but the
flow appears accelerating more than the experiment or the boundary-fitted LES.

Although not shown here, calculations of flow of collapsing water column and flow impinging on large obstacles
and few other flows have been done with satisfactory results (Nakayama et al. -
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a) surface velocity distribution (b) depth-averaged velocity distribution
%
present LES in 135 deg. bend present LES in 135 deg. bend

g £ flow flow
(¢) depth-averaged velocity distribution (d) depth-averaged velocity distribution

LES with boundary-fitted grid® experiment™ in 193 deg. bend
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Figure 7. Flow around a circular bend of a channel with rectangular cross section. Comparison of present

LES, LES using curved coordinates (Inokuma et al.*) and experiment of Blanckaert™.

5. EXAMPLE SIMULATION OF RIVER FLOW

As an application to flows in a real river we consider the flow at normal time and during a flood in a middle reach of a
meandering river Ibogawa River located in western Japan. It meanders in a mountainous region and in dry seasons
the gravel bar developed on the inner bank of the bend is exposed but it is washed during floods®. There is a small
tributary that flows into the main flow just downstream of a bend. Figures 6 show the aerial photographs of this
river during a dry season and during a flood. We simulated a reach of about 500m in length around a bend. For the
LES calculation, the upstream 100m was extended to let the turbulence develop in the approach section where a
periodic recycling boundary condition is applied. ~The initial condition was chosen to fit a flow rate of 100 m’/s but
the calculation was continued to settle at a steady state. Then we applied a hydrograph at the upstream section and a
known depth-discharge relation at the downstream section. When the discharge is about 80m?/s the flow is like that
shown in Figure 6(b).

The computational grid we used is 274 x 280 x 73 grid points to resolve 2mx2m in horizontal directions and 0.15m
in the vertical direction. About 120 largest boulders were resolved by this grid. Also in the simulation of flood
flow that inundates the sand bar on the right bank around the bend where bushes exist, the effects of the bushes are
simulated by the resistance model explained in section 2.2.

Sample of results are shown in Figure 6(b) and (d), under conditions that roughly correspond to the photographed
flows shown in Figures 6(a) and (c). For these results, a steady state is first obtained for the discharge slightly larger

than normal dry season, 100m”/s by computing for about 200 seconds of real time, which is about twice the time
flow takes to flow through the calculated reach. Then the discharge is reduced following a typical receding curve.
The results shown in Figure 6(b) are obtained when the discharge rate is 80m’/s. Though details are not shown, the
typical features of the bend with faster flow outside and higher water surface are reproduced.

The results of Figure 6(d) are obtained when the discharge is maintained at 900 m’/s after increasing is at a rate of
40m’/s every 60second. This is to simulate the flood of Aug 10, 2009 when the photograph of Figure 6(c) was taken
when the discharge dropped to about 600m’/s from the peak discharge of 1600m’/s. The extent of the area



(a) aerial photo when discharge is about 50m’/s (b) simulation results, instantaneous flow when
discharge 803/s

(c) aerial photo during flood of discharge about (d) simulation results, averaged flow when discharge
600m’’s is 900 m’/s
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Figure 8 Aerial photographs and corresponding simulation results of flow around a bend of
Ibogawa River in western Japan.

submerged under water is indicated by the edge of the inundated region. The water surface elevation was gauged at
three locations and the computed elevation was close the observed. At this discharge significant fraction of the
discharge flows along the passage behind the gravel bar near the inner bank. It is noted that the flow velocity is still
small around the center of the gravel bar. This position corresponds roughly to the points where 4. margaritacea,
community a typical gravel-bar plant in Japan but one suffering heavy damages in recent years , survived the floods
of recent years >”.  The simulation of the flow in this river reach has been done for various conditions and will be
reported separately.
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6. NOTE ON SOFTWARE

What have been explained in the previous section of this report have been put in two separate but very similar
FORTRAN programs, one with primary application in mind for hydraulic engineering involving . It still is in serial
processing only and not well optimized. But all features described for constant density flow are in a single program
with options set either in input parameters or parameter choice at the start of execution. It is therefore very close to a
self-contained package but not as well organized as open softwares and far from commercial ones.

7. CONCLUSIONS

The latest turbulent free-surface flow simulation technique of LES has been developed, tested, put to real applications
and made a generally applicable software package that is dubbed KULES. It is build on the Cartesian basis and
differenced on a fixed staggered rectangular grid system but can adapt to general boundary shapes at a low order but
in line with the concept of LES to reproduce the spatially filtered flow field in a smoothed flow region within the grid
scales.

The main feature of this package is a realistic reproduction of large-scale turbulent motion and the movement of the
free surface of the single-phase flow ignoring the motion of fluid that would exist above the presumed interface.
The validation calculations results are shown in a few basic flows and an example simulation case is shown. The
results indicate the turbulent flows in real scale are simulated satisfactorily for engineering purposes. In addition to
normall<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>