ICT・AI によるスマート社会への潮流

Trend to Smart Society with the Aid of ICT and AI

高田至郎
Shiro Takada

1. スマート社会へのイノベーション

第4次産業革命に提唱されるように、ICT（Information and Communication Technology）とAI（Artificial Intelligence）は、技術・知的分野のみならず、エネルギー、環境、経済活動などに変革をもたらし、スマート社会創出の流れに拍車がかっている。スマート社会創出は、2008年にオバマ大統領がグリーン・ニューディール政策（GND）を発表して以降、エネルギー・環境課題と関連して、世界全体に影響を及ぼした。GNDは必ずしも成果を収めたものでなかったが、スマート社会へのイノベーションの確実に進展している。本文では各分野におけるスマート社会のイメージとICTおよびAIの概要について紹介する。後述するが、2016年からスタートした5年間の科学研究基本計画の中でも「超スマート社会の実現」をも特案に掲げている。

1.1 スマート環境

低炭素社会の実現には異常気候や空気汚染を低減するために、化石燃料からの脱却が地球規模で求められている。太陽光・風力・海もさなどの再生可能エネルギーを見つけ出していく努力が進められている。一方、太陽光パネルが自然破壊をもたらす懸念も議論の対象となっており、周辺住民との観光も盛んでいる。電気自動車やエコカーによる排ガス規制も進んでいる。一方、世界的な発展途上各国は膨大な石油エネルギーを必要としている。

1.2 スマート交通システム

スマート・モビリティと称され、鉄道・自動車・バス・タクシーなど多様な都市内交通をICT・AIなどを活用して便利・快適・環境整備をもたらす計画である。ITS（Intelligent Transport Systems）が急速に発展し、VICS、ETC（カーナビ交通情報通信システム）、などが中心技術となっている。さらに、ITS スポット構想が実現しつつあり、VICS と進化型 ETC を一体として使用し、軌道駅で通信できる地点を全国で1600 スポット設置するプランである。VICSは路側機器を必要とするが、渋滞・事故・天候・走行時間などの情報が得られる。キャッシュレス・ドライブスルー・交通の制御・維持管理・保守も容易となる。

1.3 スマート家庭エネルギー消費（HEMS）

電力・ガス会社と家庭のエネルギー消費がリアルタイムで通信されて、HEMS (Home Energy Managing System) として地域グリッド全体の需要供給が制御される。家庭では消費のみならず、エネルギーを削減することも可能である。HEMSを実現するためには、消費・蓄積を測定するスマートメーター、地域データを集めて、分析・制御する地域グリッドセンターの設置も必要となる。このような HEMS は現在各地で試験的な実施が開始されている。

1.4 スマート公共交通

IT スポットやカーナビの格段の進歩が期待され、バスの到着時間が正確に表示されるとともに福祉バスの登場で高齢者や身体障害者の移動が容易となる。さらに、専の住民交通の発展によって、ドア to ドアの移動が必要、特定自動車や自転車の位置情報の取得が進むと考えられる。さらに、電気自動車の拡大によって、スーパーマーケットでの充電や余
1.5 スマート・ライブライン

電力・ガス・上下水道などによって、スマート化の意味は異なる。とくに、電力・ガスについては、規制緩和によって大手発電事業者に有している基幹施設を中小の事業者が利用して、電力の需要を行うシステムが可能となり、激しい市場の競争がスタートしている。HEMSにより、余剰電力（ネガワット）を売買する仲介事業者（アグリゲーター）が電力会社と顧客（個人・地域）を結びることになる。NECが進めているVTN(Virtual Top Node)、VEN(Virtual End Node)、Open ADR(Automatic Demand Response)などはスマート社会で拡大して行くものと考えられる。電力・ガスのみならず、上下水道でもHEMS構築に必要なSM(Smart Meter)の開発が進められている。

1.6 スマート家電

エアコン、冷蔵庫、テレビ、洗濯機、LED、給湯機などコンピューターによる自動制御技術を組み込んだ電化製品が市場を席巻している。外出先からのコントロール可能商品も実現している。人間の五感と意識の最適値をコンピューターが探索して、それぞれの役割を果たす。製品は高価であるが、エネルギー消費の視点も重要な要素である。

1.7 スマート教育

ICT社会では教育法も大きく変化する考えられる。従来の知識習得教育ではなく、自ら物事を考える能力を持つ「21世紀型教育」が必要であり、ICTを活用した新しい教育が展開される。①ICTを利用して地域格差の解消、②ICTを利用した学外活動支援や教育サポートの導入、③Webによる学習教材の導入、④SNSによる学習者のどうしの研究、⑤探究型学習環境へのICT活用、⑥災害時のWeb教室の解消などである。

1.8 スマートガバメント・ガバナンス

スマート社会への移行は、行政におけるガバナンス（統治、体制、手法）の変化も余儀なくされる。①すべての情報が必要なのでICTを使う行政と市民のIT使用環境の整備、②電子情報のセキュリティ法制の整備、③中央・地方行政のICTレベルの整備、④情報公開の取り扱い、⑤ビッグデータの取り扱い、等が課題であり、すでに訴訟も発生している。ITの使用が困難な高齢者や障がい者への対策も重要で、キーボードをタッチすることなく音声ICTの開発・導入が開始されている。情報を、聴覚、視覚と伝える誘導する（情報操作）などはスピーチ・ディフェンスの常套手段である。

1.9 スマート経済とIoT・ビッグデータ

ICT社会において、経済の発展と雇用の創出は最大の目標である。IoTあるいはIoE(Internet of Thing, Internet of Everything)は新たなビジネスモデルを生み出しつつある。IoTとは、「もの」がインターネット/クラウドに接続されて、相互に制御される状態を指しており、「もの」はIPアドレスを有しているか、フライドタグやICタグ・チップを通じてコンピューター制御が可能な状態となる。フライドタグはRadio Frequency Identifierの略語で、IC情報のタグから近距離で情報のやり取りをする通信手段で、ICタグをマイクロ集積回路から電力を分与するアクティブタグと受信側で出すパッシブタグがある。商品にタグを取り付けて管理したり、火災や動物にタグを付けて保護することも既に実用化している。電磁波や磁界の強さ、エネルギーの継続時間が課題である。定期的にICタグを埋め込まれていることは良く知られている。一方、ビッグデータは、数年前に出てきた用語で、新たなスマート社会形成、ビジネス形成のため的大容量データ取得を持つ。厳格な定義は無い現状であるが、おおよそ数テラバイトという見解もあり、これまでのデータ解析ソフトでは取り扱えないようなデータ数である。総務省では、(1)絶大な量のデジタルデータ、(2)高頻度に得られるリアルタイム大量データ、(3)多様多様な大量データ、という定義を与えている。ビッグデータを用いる場合には、数値がビッグであるというだけではなく、目的とスマート社会に与える影響がビッグであると考えられている。IoTやビッグデータを使用した新たなビジネス展開例を以下に示す。
①「Philips Hue」ではIoT活用でネットワークからコントロールできる電球を売り出しており、スマホなどにより外出先から電球のOn/Offが可能である

②「Tesla」の電気自動車はIoT部品管理など遠隔装置が可能なリモート通知も容易である。

③アマゾンはDash Buttonを会員向けに提供し、日用品をボタン1つで自動注文できる。一例として、トイレットペーパーに取り付けたDash Buttonは紙の状況を判断し、残量が少なくなればアマゾンは宅配で届ける。冷蔵庫内の食糧消耗品も同様である。

④API連携による様々な業種のエコシステム構築を目的として「Nest Developer Program」を2014年に立ち上げ、自社製品を中心に家全体にサービス拡大を図っている。APIの概念を図-1.1に示す。

![API](image)

図-1.1 APIの概念

1.10スマート共生

今後の労働人口減少、高齢社会では市民の共生が重要であり、相互扶助・共助による人と人の繋がりが大切となる。スマート社会ではICTは情報を伝える役割は勿論のこと、人と人が繋がる社会を念頭に置いている。行政は、公益は勿論のこと、地域の支援を受けながら社会を構築していく方向を目指している（図-1.2）。

![スマート共生](image)

図-1.2スマート共生

2．第4次産業革命

2.1 インダストリ4.0およびソサエティ5.0

インダストリ4.0はドイツ政府が2015年に提唱した製造業の高度化を目指す戦略的プロジェクトであり、情報技術を駆使した製造業のイノベーションを意味する。全ての工場生産機器がインターネットによって繋がり、またビッグ
データを駆使しながら、機械同士が連携して動作する事はもとより、機械と人とが連携して動くことにより、製造現場が最適化されると想定している。北米や日本でも同様な動きがある。4.0は表-2.1に示すように第4次産業革命を目指しており、ICTによる自動化と「産業の繋がり」を目指したプロジェクトである。

表-2.1 第4次産業革命

また、ソサエティ5.0は日本政府の総合科学技術・イノベーション会議で検討され、2016年1月に閣議決定された2016年度から5年間の科学技術政策の基本指針「第5期科学技術基本計画」の中で使われている言葉である。ICTを最大限に活用し、サイバー空間とフィジカル空間（現実世界）とを融合させた取組みにより、人々を豊かさをもたらす「超スマート社会」を未来社会の姿として共有し、その実現に向けた一連の取組みを更に深化させつつ「Society 5.0」として強力に推進し、世界に先駆けて超スマート社会を実現していくことを唱っている。

2.2 スマート防災4.0

ICTによる情報化・自動化の時代に適応した防災対策のあり方を検討する委員会が内閣府主導で実施されており（2015年〜）、防災4.0と呼ばれている。4.0は、伊勢湾台風（1959年）、阪神・淡路大震災（1995年）、東日本大震災（2011年）を踏まえて、次の大規模な災害にどう備えるかを検討する計画である。1.0〜3.0の大災害を踏まえ、また、気候変動や情報通信新技術の動向を踏まえて、①地域住民の備え、②企業における備え、③情報通信技術の活用、を3本柱としている。情報通信技術の活用では、準天頂衛星・ドローンの活用、SNSによる地域コミュニティの強化、情報リテラシの向上、民間の創意工夫による新たなサービスの創出、を掲げている。

3. SM（スマートメーター）通信技術の進展

1.3で述べたHEMSは地域のエネルギー制御には極めて有効であり、スマート社会をさせる基本技術である。しかし、膨大なデータ量であり、都市部のみならず山間地域にも有用、安価、安定した通信ネットワークを構成する必要がある。電力・ガスなどのエネルギー・通信・上下水道、関連事業者とはSMの開発に向けて基本的な研究・開発段階にあたる。SMのみならず、移動体通信（スマートネス）、衛星通信、IoT通信など、各分野で通信技術の格段の進歩がなされようとしている。ここでは、SMに焦点を当てて通信技術の現状動向について紹介する。

3.1 SM伝送方式

スマート社会は市域全体を対象とするので、数百〜数千万台の大規模なネットワーク構築を必要とする。すべての顧客が利用するので、複雑な機器設定や、膨大な設備構築費用をかけられない困難さがある。
3.2 屋内送信とWAN

家庭内エネルギー（図-3.1 Bルート）は家庭のGate Way のSMからPower Line cable（WAN回線）でデータ収集サーバーに送信される。インターネットでつながった建物内のネットワークはLAN（Local Area Network）であるが、電話・電力など専用回線でつながるネットワークはWAN（Wide Area Network）と呼ばれる。WANは世界中のコンピューターとネットワークを構成し、情報セキュリティは極めて重要である（図-3.2）。

3.3 無線マルチポップ方式

端末同士が直接通信するだけではなく、他の端末を経由することで、より広い範囲の端末と通信を可能にする無線ネットワークをホップ・ステップ・ジャンプと同様にホップ通信という。図-3.3でBからAに通信できなくても順次電波端末拠点を飛んでAに到達することができる。①小電力でも通信可能、②どのルートを飛んでいくか自動的に最適路を判断して電波障害などを避け、安定した通信が可能、などの特徴を持っている。電波のパケッジリレーに似た通信技術ともいえる。

3.4 1:N通信

図-3.4に示すように、無線マルチポップ通信が構成できないような地域に、1つの通信機器で山間部などの多くの区でN軒の利用者が使用できる通信システムである。第3世代LTE（Long Term Evolution）に対応している。このように、SM通信は、①複数の通信方式の採用、②将来技術にも対応、③安定した長期運用、④将来開発のHEMSセンサーにも対応、等の配慮を必要とされる。
4. AI（人工頭脳）

AI (Artificial Intelligence) の定義は未だに明確ではないが、1956 年頃に、「人間の知的な行為をコンピューターに行うこと」や「人間のような知能をコンピューターに搭載すること」と考えられている。スタートした時点を 1 次 AI とすると、第 2 次 AI はエキスパートシステムの導入で、専門家の持つルールと知識をコンピューターに導入する AI である。すなわち、ビッグデータ活用などによる機械学習によるルール作りである。しかし、最近は、第 3 次 AI ブームの時代と云われており、人間のもつルール学習ではなく、ディープラーニングによる AI の構築である。IBM は AI を「Artificial Intelligence (人工知能)」ではなく、「Augmented Intelligence (拡張知能)」として人間の知識を拡張し増強するものと定義し、IBM Watson を 2011 年に開発して以来、2016 年には Watson 日本語版を提供している。データの持つ特徴を自動的に抽出する手法がディープラーニングと呼ばれる。

4.1 ルール学習 AI

一般に機械学習とは学習能力をコンピューターに獲得させる手法・技術の総称である。専門家が従来のデータを分析してその特徴を定義し、ルールを作り上げて、それをコンピューターに移植する AI である。第 2 次 AI のエキスパートシステムが相当する。しかし、人間がルールを定義するために複雑な特徴を表現できなかった。膨大なデータの蓄積とコンピューターの計算能力の向上が、将棋・碁などの対戦で AI が勝利を収めるケースが増えている。

4.2 ディープ（深層）学習 AI とディープ（深層）強化学習 AI

深層学習は AI（人工知能）自体が学習データから特徴を抽出する手法である。ディープ学習の現在の適用領域は、①音声認識、②画像認識、③言語処理、が主要である。言語認識が実用化レベルの段階にあり、続いて画像処理で、商品検査、商品検査、衛星画像認識の分野で活用が拡大している。画像認識は自動運転におけるビッグデータ画像でルール自動学習に期待がかかっている。また、ディープ学習はロボットの自動制御にも利用される。ディープ学習を活用した「知能と知能をつなぐネットワーク」（ブリファードネットワーク）の試みも始まっている。人間と異なり、機械が学習した「知能」は他の機械にコピーが可能であり、「賢い機械ネットワーク」の構築である。一方、強化学習は、機械学習では入力に対して予測した答えを出力するが、強化学習では明確な答えを出力しないかわりに、「行動」の選択肢と「報酬（期待値）」を提示する。強化学習に深層学習を取り入れた手法が深層強化学習で、事前に学習データを準備する必要がない、ともいえる。これらの AI はスマート社会の創出に多大の寄与をすることは間違いないが、AI 技術（者）、大量のデータ、膨大な計算リソースを必要とする。

5. まとめ

本文では、ICT/AI によるスマート社会創出への潮流を示すとともに、それぞれの分野における将来課題に言及した。また、スマート社会に基本的に要求される通信先端技術の進行状況について紹介した。さらに、注目されている第 3 次 AI 技術の動向について述べた。

参考文献
1) 経済産業省：第四次産業革命に向けた競争政策の在り方に関する研究会 報告書、〜Connected Industries の実現に向けて〜、2017
2) 文部科学省：28 年度科学技術白書、超スマート社会の到来、2017
3) 朝日新聞：コトバンク、グリーン・ニューディール、https://kotobank.jp/word5/、2017
5) 柏木孝夫：経済発展と環境対策の両立に向けて～スマートシティという視点～、国土交通省、Web レター、http://www.mlit.go.jp/kokudokeikaku/iten/service/newsletter/i_02_71_1.html, 2017
6) 日経スマートシティ・コンソーシアム：加速するスマートモビリティへの取り組み、
http://bizgate.nikkei.co.jp/smartcity/technology/000611.html, 2017
7) 内閣府：高度な情報通信技術を活用した交通安全確保のための取組について、
8) 経済産業省：HEMS 備忘基準-HEMS データ利活用事業者関 API 標準仕様書、スマートハウス・ビル標準・事業促進検討会, 2017
9) NET JAPAN：「NECの仮想テナントネットワーク技術」、Open Daylightプロジェクトに採用、
https://japan.zdnet.com/article/38043498/, 2017
10) 水道技術研究センター(JWRC)：水道スマートメーターに関する協議会について、
http://www.jwrc-net.or.jp/kenshu-koushu/handout/smart_kyougi.html, 2017
12) 篠原裕光、佐藤大一：ICT 化により変革を迎える学校教育と「スマート教育」の可能性、知的資源創造、2013
13) ネマト・シャフィク：スマート・ガバナンス：今日の世界経済の解決策（IMF 講演）、2013年
14) 城田真琴：第 4 次産業革命のトレンド、下水道展講演会、2017
15) (株) エンク：IC の種類、HTML ダグ辞典：http://www.icfan.com/010ic/ic.html
16) 総務省：平成 27 年度情報通信白書、ICT が拓く未来社会、2016
18) Nomura Research Institute, Ltd.
19) Nomura Research Institute, Ltd. https://www.amazon.co.jp/b?ie=UTF8&node=4752863051
20) 中島健祐：スマートシティと共生デザイン、AXIS Web Magazine, 2013
21) (一財) 九州地域産業活性化センター：「第四次産業革命」(IoT 時代のものづくり)、勉強会運営支援業務報告書、2016
22) 内閣府：日本経済 2016-2017、第 4 次産業革命のインパクト、2017
23) 内閣府：「防災 4.0」未来構想プロジェクト：「防災 4.0 未来構想プロジェクト、2016
24) 井上俊宏：スマートメーターの通信方式の技術動向について、2015年
25) 三津村直貴：人工知能《超入門》ディープラーニングの可能性と脅威、Kindle版、2015

著者
高田至郎 所員 工学博士 地震工学